metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(acetonitrile- κN)(η^5 -pentamethylcvclopentadienvl)(pvrimidine- κN)rhodium(III) bis(hexafluoridophosphate)

Julie L. Boyer, Scott R. Wilson* and Thomas B. Rauchfuss

University of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, IL 61801, USA Correspondence e-mail: srwilson@uiuc.edu

Received 28 August 2007; accepted 12 September 2007

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.037; wR factor = 0.100; data-toparameter ratio = 16.6.

The title compound, $[Rh(C_{10}H_{15})(C_4H_4N_2)(C_2H_3N)_2](PF_6)_2$ or [Cp*Rh(NCMe)₂(N₂C₄H₄)](PF₆)₂, where Cp* is pentamethylcyclopentadienyl, was obtained from the treatment of an acetonitrile solution of [Cp*Rh(NCMe)₃](PF₆)₂ with an excess of pyrimidine. The Rh^{III} center is coordinated by one Cp* ring, two acetonitrile ligands and one pyrimidine ligand in a pseudo-octahedral geometry. Both PF₆ anions are disordered (site occupancies ca 0.4:0.6, and 0.3:0.4:0.3).

Related literature

For selected literature on metal-pyrimidine complexes, see: Barnett et al. (2005); Nedelec & Rochon (2001); Sharma et al. (1998). For the synthesis of $[Cp*Rh(NCMe)_3](PF_6)_2$, see: White et al. (1992).

Experimental

Crystal data

[Rh(C10H15)(C4H4N2)(C2H3N)2]- $(PF_6)_2$ $M_r = 690.27$ Orthorhombic, Pbca a = 144046 (8) Å b = 14.7669 (7) Å c = 24.3537 (13) Å

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: integration (SHELXTL and XPREP; Bruker, 2005) $T_{\min} = 0.625, T_{\max} = 0.813$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	241 restraints
$wR(F^2) = 0.100$	H-atom parameters not refined
S = 1.04	$\Delta \rho_{\rm max} = 0.93 \ {\rm e} \ {\rm \AA}^{-3}$
7612 reflections	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
459 parameters	

V = 5180.3 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-3}$

 $0.36 \times 0.36 \times 0.32$ mm

93720 measured reflections

7612 independent reflections

6384 reflections with $I > 2\sigma(I)$

T = 193 (2) K

 $R_{\rm int} = 0.026$

Z = 8

Table 1

Selected bond lengths (Å).

Rh1-N1	2.093 (2)	Rh1-N3	2.148 (2)
Rh1-N2	2.110 (2)	Rh1-C2	2.149 (2)
Rh1-C4	2.136 (3)	Rh1-C3	2.156 (3)
Rh1-C1	2.140 (2)	Rh1-C5	2.176 (3)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2005); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: XCIF (Bruker, 2005).

The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants NSF CHE 95-03145 and NSF CHE 03-43032 from the National Science Foundation. This research was supported by the US Department of Energy (grant No. DEFG02-90ER 14146).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2063).

References

- Barnett, S. A., Champness, N. R. & Wilson, C. (2005). Eur. J. Inorg. Chem. pp. 1572-1576.
- Bruker (2004). APEX2. Version 2.0-1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). SAINT (Version 7.23A), SHELXTL (Version 6.14), XCIF (Version 6.12) and XPREP (Version 2005/2). Bruker AXS Inc., Madison, Wisconsin, USA.
- Nedelec, N. & Rochon, F. D. (2001). Inorg. Chim. Acta, 319, 95-108.
- Sharma, C. V. K., Griffin, S. T. & Rogers, R. D. (1998). Chem. Commun. pp. 215-216.
- White, C., Yates, A. & Maitlis, P. M. (1992). Inorg. Synth. 29, 228-234.

Acta Cryst. (2007). E63, m2574 [doi:10.1107/S1600536807044716]

Bis(acetonitrile- κN)(η^5 -pentamethylcyclopentadienyl)(pyrimidine- κN)rhodium(III) bis(hexafluoridophosphate)

J. L. Boyer, S. R. Wilson and T. B. Rauchfuss

Comment

While pyrimidine and pyrimidine derivatives are biologically relevant, only 120 crystal structures with metal–pyrimidine bonds have been reported, none of which contain Cp co-ligands (Barnett *et al.*, 2005; Nedelec & Rochon, 2001; and Sharma *et al.*, 1998). Here we report the crystal structure of $[Cp*Rh(NCMe)_2(N_2C_4H_4)](PF_6)_2$ as an unique half-sandwich pyrimidine adduct. The Rh—N distance for the two acetonitrile ligands are 2.093 (2) and 2.109 (2) Å. The coordinated pyrimidine has a longer Rh—N distance of 2.148 (2) Å. The N—Rh—N angles are slightly contracted ranging from 86.05 (9) to 88.74 (10)°.

Experimental

 $[Cp*Rh(NCMe)_3](PF_6)_2$ was prepared according to literature methods (White *et al.*, 1992). The compound was synthesized by dissolving 95 mg (0.15 mmol) $[Cp*Rh(NCMe)_3](PF_6)_2$ and 35 mg (0.44 mmol) pyrimidine in 2 ml MeCN. Yellow crystals were grown at room temperature by vapor diffusion of diethylether into an acetonitrile solution.

Refinement

The proposed model includes multiple disordered sites for the two anions. Disordered anion moieties were refined as rigid, idealized groups with similar amplitude restraints imposed on displacement parameters for overlapping sites separated by less than Van der Waals radii using an effective standard deviation of 0.01 Å. The single idealized group refinement for the first set converged with some principal mean square atomic displacements that differed by as much as a factor of ten and some that were nearly isotropic. This suggested that a single rigid body with anisotropic displacement parameters was a poor fit to the observed data. In addition, residual electron density in excess of 2 e/Å³ from a subsequent difference Fourier map clearly indicated multiple potential surfaces for this anion. After refining two rigid groups (P1, P3) for the first set, residual density from a subsequent difference Fourier map indicated reasonable atomic positions for a third group. The proposed model for the second anion set (P2, P4) was developed simultaneously in a like manner. Methyl H atom positions, R—CH₃, were optimized by rotation about R—C bonds with idealized C—H, R—H and H…H distances. Remaining H atoms were included as riding idealized contributors. Methyl H atom U's were assigned as 1.2 times the carrier U_{eq} .

Figures

Fig. 1. SHELXTL/XP (Bruker, 2005) plot showing 50% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Disordered anions were draw schematically with minimal labels for clarity.

$Bis(acetonitrile - \kappa N)(\eta^5 - pentamethylcyclopentadienyl)(pyrimidine - \kappa N) rhodium(III) \ bis(hexafluoridophosphate)$

Crystal data	
[Rh(C ₁₀ H ₁₅)(C ₄ H ₄ N ₂)(C ₂ H ₃ N) ₂](PF ₆) ₂	$F_{000} = 2752$
$M_r = 690.27$	$D_{\rm x} = 1.770 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 9298 reflections
<i>a</i> = 14.4046 (8) Å	$\theta = 2.2 - 30.7^{\circ}$
<i>b</i> = 14.7669 (7) Å	$\mu = 0.89 \text{ mm}^{-1}$
c = 24.3537 (13) Å	T = 193 (2) K
$V = 5180.3 (5) \text{ Å}^3$	Prism, yellow
Z = 8	$0.36 \times 0.36 \times 0.32 \text{ mm}$
Dute a llastice	
Data collection	
Bruker Kappa APEXII CCD diffractometer	7612 independent reflections
Radiation source: fine-focus sealed tube	6384 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 193(2) K	$\theta_{\text{max}} = 30.1^{\circ}$
profile data from ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: integration	h = -20 10

Refinement

(SHELXTL and XPREP; Bruker, 2005)

 $T_{\min} = 0.625, T_{\max} = 0.813$

93720 measured reflections

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters not refined
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.0435P)^2 + 9.0148P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.017$

 $h = -20 \rightarrow 19$

 $k = -20 \rightarrow 20$ $l = -34 \rightarrow 34$

7612 reflections

 $\Delta \rho_{\text{max}} = 0.93 \text{ e } \text{\AA}^{-3}$

459 parameters241 restraints

 $\Delta \rho_{min} = -0.72 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Experimental. One distinct cell was identified using *APEX2* (Bruker, 2004). Five frame series were integrated and filtered for statistical outliers using *SAINT* (Bruker, 2005) then corrected for absorption by integration using *SHELXTL/XPREP* (Bruker, 2005) before using *SAINT/SADABS* (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods. Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F^2 . The highest peaks in the final difference Fourier map were in the vicinity of atoms F7 and F3; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed no dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Rh1	0.568281 (13)	0.322308 (12)	0.639265 (8)	0.02201 (6)	
C1	0.59292 (19)	0.43808 (17)	0.69007 (11)	0.0269 (5)	
C2	0.68007 (17)	0.39330 (16)	0.67877 (10)	0.0239 (5)	
C3	0.67538 (19)	0.30338 (17)	0.70001 (11)	0.0275 (5)	
C4	0.5845 (2)	0.2917 (2)	0.72445 (11)	0.0318 (6)	
C5	0.53674 (19)	0.3764 (2)	0.72025 (11)	0.0315 (5)	
C6	0.5700 (3)	0.5338 (2)	0.67585 (15)	0.0435 (7)	
H6A	0.5898	0.5737	0.7057	0.065*	
H6B	0.5028	0.5396	0.6705	0.065*	
H6C	0.6022	0.5508	0.6419	0.065*	
C7	0.7606 (2)	0.4361 (2)	0.65047 (12)	0.0353 (6)	
H7A	0.7996	0.4672	0.6775	0.053*	
H7B	0.7381	0.4799	0.6234	0.053*	
H7C	0.7972	0.3893	0.6319	0.053*	
C8	0.7502 (2)	0.2337 (2)	0.69899 (14)	0.0441 (7)	
H8A	0.7795	0.2301	0.7353	0.066*	
H8B	0.7969	0.2505	0.6716	0.066*	
H8C	0.7235	0.1747	0.6895	0.066*	
С9	0.5515 (3)	0.2092 (3)	0.75445 (17)	0.0576 (10)	
H9A	0.5662	0.2151	0.7936	0.086*	
H9B	0.5826	0.1555	0.7396	0.086*	
H9C	0.4843	0.2030	0.7498	0.086*	
C10	0.4433 (2)	0.3962 (3)	0.74368 (15)	0.0548 (10)	
H10A	0.4492	0.4088	0.7830	0.082*	

11100	0.4026	0.2420	0 7292	0.000*	
HIUB	0.4026	0.3438	0.7383	0.082*	
HIOC	0.4107	0.4491	0.7251	0.082*	
NI C11	0.42867 (16)	0.31056 (16)	0.61660 (11)	0.0320 (5)	
	0.3546 (2)	0.30076 (18)	0.60177 (12)	0.0319 (5)	
	0.2609 (2)	0.28/4 (2)	0.581/3 (15)	0.0462 (8)	
HI2A	0.2424	0.3395	0.5593	0.069*	
H12B	0.2184	0.2814	0.6129	0.069*	
HI2C	0.2585	0.2322	0.5594	0.069*	
C13	0.6125 (2)	0.42360 (19)	0.52430 (11)	0.0337 (6)	
N2	0.59482 (18)	0.38485 (16)	0.56298 (9)	0.0317 (5)	
C14	0.6351 (3)	0.4750 (3)	0.47474 (13)	0.0520 (9)	
H14A	0.6240	0.5396	0.4813	0.078*	
H14B	0.5958	0.4543	0.4444	0.078*	
H14C	0.7005	0.4656	0.4653	0.078*	
N3	0.58730 (16)	0.19358 (15)	0.59979 (10)	0.0280 (4)	
C15	0.6593 (2)	0.17756 (19)	0.56566 (12)	0.0345 (6)	
H15	0.7032	0.2250	0.5610	0.041*	
N4	0.67417 (19)	0.10158 (18)	0.53820 (11)	0.0402 (6)	
C16	0.6122 (2)	0.0354 (2)	0.54516 (14)	0.0408 (7)	
H16	0.6202	-0.0196	0.5255	0.049*	
C17	0.5376 (2)	0.0438 (2)	0.57957 (15)	0.0415 (7)	
H17	0.4949	-0.0045	0.5847	0.050*	
C18	0.5271 (2)	0.12540 (19)	0.60656 (13)	0.0353 (6)	
H18	0.4758	0.1334	0.6306	0.042*	
P1	0.4462 (3)	0.2436 (2)	0.43923 (14)	0.0403 (15)	0.408 (5)
F1	0.3842 (4)	0.3239 (3)	0.4127 (3)	0.081 (2)	0.408 (5)
F2	0.5083 (4)	0.1632 (3)	0.4658 (3)	0.090 (2)	0.408 (5)
F3	0.4497 (4)	0.1931 (4)	0.38019 (18)	0.072 (2)	0.408 (5)
F4	0.4428 (5)	0.2940 (4)	0.49825 (19)	0.076 (2)	0.408 (5)
F5	0.3525 (3)	0.1885 (3)	0.4546 (2)	0.0509 (17)	0.408 (5)
F6	0.5400 (3)	0.2986 (4)	0.4238 (3)	0.078 (2)	0.408 (5)
P2	0.28776 (14)	0.02841 (15)	0.67394 (8)	0.0362 (6)	0.588 (5)
F7	0.18034 (15)	0.0385 (4)	0.65521 (14)	0.0862 (18)	0.588 (5)
F8	0.39517 (16)	0.0183 (3)	0.69267 (14)	0.0647 (14)	0.588 (5)
F9	0.2574 (3)	0.0414 (2)	0.73750 (9)	0.0506 (13)	0.588 (5)
F10	0.3182 (2)	0.0155 (3)	0.61038 (9)	0.0713 (17)	0.588 (5)
F11	0.3014 (3)	0.13688 (15)	0.66808 (17)	0.0900 (18)	0.588 (5)
F12	0.2742 (3)	-0.08006 (16)	0.67979 (17)	0.0821 (15)	0.588 (5)
Р3	0.4535 (4)	0.2487 (3)	0.43830 (17)	0.034 (3)	0.304 (4)
F13	0.4356 (6)	0.3326 (5)	0.4798 (3)	0.061 (2)	0.304 (4)
F14	0.4713 (6)	0.1648 (4)	0.3967 (3)	0.055 (2)	0.304 (4)
F15	0.3741 (5)	0.2876 (5)	0.3975 (3)	0.077 (2)	0.304 (4)
F16	0.5329 (5)	0.2098 (6)	0.4791 (3)	0.099 (3)	0.304 (4)
F17	0.3759 (5)	0.1897 (5)	0.4705 (3)	0.080 (3)	0.304 (4)
F18	0.5311 (5)	0.3078 (5)	0.4061 (3)	0.083 (3)	0.304 (4)
P4	0.2829 (2)	0.04411 (19)	0.66883 (12)	0.0334 (7)	0.412 (5)
F19	0.2476 (4)	0.0260 (3)	0.73103 (13)	0.0478 (17)	0.412 (5)
F20	0.3182 (3)	0.0622 (3)	0 60663 (13)	0.0514 (16)	0.412(5)
F21	0 1967 (3)	0 1128 (4)	0 6591 (2)	0.087 (2)	0.412(5)
1 - 1	0.1707 (3)	0.1120 (1)	0.0071 (2)	0.007 (2)	5.112 (5)

F22	0.3690 (4)	-0.0246 (4)	0.6786 (2)	0.090 (2)	0.412 (5)
F23	0.2198 (4)	-0.0395 (4)	0.6474 (2)	0.088 (2)	0.412 (5)
F24	0.3460 (4)	0.1277 (3)	0.6903 (2)	0.079 (2)	0.412 (5)
P5	0.4569 (3)	0.2483 (3)	0.44008 (16)	0.028 (2)	0.288 (4)
F25	0.4469 (6)	0.2722 (6)	0.37544 (17)	0.085 (2)	0.288 (4)
F26	0.4668 (6)	0.2243 (6)	0.50474 (18)	0.094 (2)	0.288 (4)
F27	0.3520 (4)	0.2086 (5)	0.4403 (3)	0.057 (2)	0.288 (4)
F28	0.5617 (4)	0.2879 (6)	0.4399 (4)	0.090 (3)	0.288 (4)
F29	0.4174 (6)	0.3477 (4)	0.4557 (4)	0.077 (3)	0.288 (4)
F30	0.4963 (6)	0.1488 (4)	0.4244 (4)	0.082 (2)	0.288 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.02173 (10)	0.02244 (10)	0.02185 (10)	-0.00308 (7)	-0.00013 (7)	0.00192 (6)
C1	0.0279 (12)	0.0266 (11)	0.0262 (12)	0.0018 (9)	-0.0002 (10)	-0.0038 (9)
C2	0.0234 (11)	0.0271 (11)	0.0212 (10)	-0.0023 (9)	-0.0004 (9)	-0.0015 (9)
C3	0.0292 (13)	0.0275 (11)	0.0259 (12)	0.0013 (9)	-0.0046 (10)	0.0012 (9)
C4	0.0334 (14)	0.0382 (14)	0.0237 (12)	-0.0083 (11)	-0.0022 (10)	0.0078 (10)
C5	0.0244 (12)	0.0458 (15)	0.0242 (12)	-0.0021 (11)	0.0030 (10)	-0.0020 (11)
C6	0.054 (2)	0.0292 (14)	0.0475 (18)	0.0098 (13)	-0.0076 (15)	-0.0049 (13)
C7	0.0292 (14)	0.0434 (15)	0.0332 (14)	-0.0106 (12)	0.0028 (11)	-0.0006 (11)
C8	0.0438 (17)	0.0386 (15)	0.0498 (18)	0.0137 (13)	-0.0116 (15)	-0.0009 (13)
С9	0.068 (2)	0.058 (2)	0.047 (2)	-0.0242 (19)	-0.0037 (18)	0.0267 (18)
C10	0.0317 (16)	0.091 (3)	0.0420 (18)	0.0036 (17)	0.0129 (14)	-0.0070 (19)
N1	0.0289 (12)	0.0328 (11)	0.0342 (12)	-0.0012 (9)	-0.0028 (9)	0.0024 (9)
C11	0.0314 (14)	0.0301 (12)	0.0343 (14)	-0.0025 (10)	-0.0041 (11)	0.0027 (10)
C12	0.0342 (16)	0.0484 (17)	0.056 (2)	-0.0040 (14)	-0.0166 (15)	0.0043 (15)
C13	0.0392 (15)	0.0328 (13)	0.0290 (13)	-0.0071 (11)	-0.0004 (11)	-0.0003 (10)
N2	0.0364 (12)	0.0327 (11)	0.0260 (11)	-0.0072 (10)	-0.0013 (9)	0.0011 (9)
C14	0.071 (2)	0.0529 (19)	0.0322 (16)	-0.0148 (18)	0.0076 (16)	0.0122 (14)
N3	0.0289 (11)	0.0249 (9)	0.0302 (11)	-0.0024 (8)	-0.0014 (9)	-0.0007 (8)
C15	0.0324 (14)	0.0336 (13)	0.0376 (15)	-0.0033 (11)	0.0032 (12)	-0.0026 (11)
N4	0.0398 (14)	0.0374 (13)	0.0434 (14)	0.0025 (11)	0.0020 (11)	-0.0061 (11)
C16	0.0440 (17)	0.0309 (13)	0.0475 (18)	0.0039 (12)	-0.0075 (14)	-0.0073 (12)
C17	0.0397 (16)	0.0274 (13)	0.057 (2)	-0.0057 (12)	-0.0040 (15)	-0.0009 (13)
C18	0.0339 (14)	0.0285 (12)	0.0435 (16)	-0.0052 (11)	0.0011 (12)	0.0020 (11)
P1	0.048 (3)	0.036 (2)	0.037 (3)	-0.0051 (19)	-0.012 (2)	-0.0006 (19)
F1	0.085 (4)	0.055 (4)	0.103 (5)	0.004 (3)	-0.015 (4)	0.031 (4)
F2	0.092 (4)	0.069 (4)	0.108 (5)	0.019 (3)	-0.065 (4)	0.008 (4)
F3	0.078 (4)	0.085 (5)	0.053 (4)	0.003 (4)	0.001 (3)	-0.022 (4)
F4	0.096 (4)	0.084 (5)	0.047 (4)	-0.017 (4)	-0.004 (3)	-0.027 (3)
F5	0.056 (3)	0.050 (3)	0.046 (4)	-0.019 (3)	-0.010 (3)	0.015 (3)
F6	0.042 (3)	0.077 (4)	0.116 (6)	-0.037 (3)	0.013 (4)	-0.015 (4)
P2	0.0333 (11)	0.0463 (10)	0.0290 (9)	-0.0026 (8)	-0.0009 (7)	0.0082 (8)
F7	0.038 (2)	0.173 (5)	0.048 (2)	0.005 (3)	-0.0042 (17)	0.030 (3)
F8	0.0369 (19)	0.106 (4)	0.051 (2)	-0.013 (2)	-0.0052 (17)	0.023 (2)
F9	0.064 (3)	0.049 (2)	0.038 (2)	-0.006 (2)	0.005 (2)	0.0008 (18)

F10	0.054 (2)	0.130 (5)	0.0303 (19)	-0.007 (3)	0.0069 (17)	0.004 (2)
F11	0.136 (5)	0.051 (2)	0.083 (4)	0.003 (3)	0.022 (3)	0.032 (2)
F12	0.101 (4)	0.059 (2)	0.087 (3)	-0.018 (2)	0.021 (3)	-0.020(2)
P3	0.035 (4)	0.032 (4)	0.036 (4)	-0.011 (3)	-0.003 (4)	-0.005 (3)
F13	0.081 (5)	0.062 (5)	0.040 (5)	0.012 (4)	-0.014 (4)	-0.021 (4)
F14	0.084 (6)	0.026 (3)	0.056 (5)	0.008 (3)	-0.007 (4)	-0.012 (3)
F15	0.082 (5)	0.064 (5)	0.085 (5)	0.007 (4)	-0.037 (4)	0.014 (4)
F16	0.102 (5)	0.098 (5)	0.098 (5)	0.031 (5)	-0.041 (4)	0.000 (5)
F17	0.077 (5)	0.083 (5)	0.078 (6)	-0.022 (4)	0.000 (5)	0.012 (4)
F18	0.075 (5)	0.073 (5)	0.101 (6)	-0.009 (4)	0.008 (5)	0.004 (5)
P4	0.0357 (15)	0.0394 (12)	0.0251 (13)	-0.0036 (10)	-0.0032 (10)	0.0008 (10)
F19	0.059 (4)	0.064 (4)	0.020 (2)	-0.018 (3)	-0.002 (2)	0.000(2)
F20	0.044 (3)	0.079 (4)	0.032 (3)	-0.009 (3)	0.004 (2)	-0.006 (3)
F21	0.071 (4)	0.116 (5)	0.074 (4)	0.032 (4)	0.023 (3)	0.032 (4)
F22	0.080 (5)	0.119 (5)	0.070 (4)	0.050 (4)	-0.006 (4)	0.010 (4)
F23	0.109 (5)	0.094 (4)	0.062 (4)	-0.064 (4)	0.012 (4)	-0.014 (3)
F24	0.093 (5)	0.088 (5)	0.056 (4)	-0.055 (4)	0.026 (4)	-0.020 (3)
P5	0.031 (3)	0.025 (3)	0.028 (3)	0.008 (3)	-0.009 (3)	-0.005 (3)
F25	0.096 (5)	0.092 (5)	0.068 (4)	0.002 (5)	-0.004 (4)	0.023 (4)
F26	0.099 (5)	0.113 (5)	0.070 (4)	0.010 (5)	-0.031 (4)	0.012 (4)
F27	0.044 (4)	0.067 (5)	0.060 (5)	-0.018 (4)	-0.005 (3)	0.000 (4)
F28	0.059 (5)	0.098 (5)	0.112 (7)	-0.007 (5)	0.001 (5)	-0.029 (5)
F29	0.092 (5)	0.060 (4)	0.078 (6)	0.020 (4)	0.000 (5)	-0.023 (5)
F30	0.101 (5)	0.052 (4)	0.092 (5)	0.020 (4)	-0.007 (5)	-0.004(4)

Geometric parameters (Å, °)

Rh1—N1	2.093 (2)	C14—H14C	0.9800
Rh1—N2	2.110 (2)	N3—C18	1.339 (3)
Rh1—C4	2.136 (3)	N3—C15	1.350 (4)
Rh1—C1	2.140 (2)	C15—N4	1.324 (4)
Rh1—N3	2.148 (2)	C15—H15	0.9500
Rh1—C2	2.149 (2)	N4C16	1.335 (4)
Rh1—C3	2.156 (3)	C16—C17	1.368 (5)
Rh1—C5	2.176 (3)	C16—H16	0.9500
C1—C5	1.423 (4)	C17—C18	1.381 (4)
C1—C2	1.445 (4)	С17—Н17	0.9500
C1—C6	1.492 (4)	C18—H18	0.9500
C2—C3	1.427 (3)	P1—F4	1.6199
C2—C7	1.490 (4)	P1—F6	1.6199
C3—C4	1.448 (4)	P1—F5	1.6200
C3—C8	1.491 (4)	P1—F1	1.6201
C4—C5	1.432 (4)	P1—F3	1.6201
C4—C9	1.498 (4)	P1—F2	1.6202
C5—C10	1.491 (4)	P2—F10	1.6198
С6—Н6А	0.9800	P2—F7	1.6199
С6—Н6В	0.9800	P2—F8	1.6200
С6—Н6С	0.9800	P2—F12	1.6200
С7—Н7А	0.9800	P2—F11	1.6200

С7—Н7В	0.9800	P2—F9	1.6200
С7—Н7С	0.9800	P3—F16	1.6199
C8—H8A	0.9800	P3—F13	1.6199
C8—H8B	0.9800	P3—F18	1.6200
C8—H8C	0.9800	P3—F17	1.6201
С9—Н9А	0.9800	P3—F14	1.6201
С9—Н9В	0.9800	P3—F15	1.6202
С9—Н9С	0.9800	P4—F23	1.6199
C10—H10A	0.9800	P4—F21	1.6200
C10—H10B	0.9800	P4—F22	1.6200
C10—H10C	0.9800	P4—F20	1.6200
N1—C11	1.136 (4)	P4—F19	1.6200
C11—C12	1.449 (4)	P4—F24	1.6201
C12—H12A	0.9800	P5—F25	1.6198
C12—H12B	0.9800	P5—F27	1.6198
C12—H12C	0.9800	P5—F30	1.6199
C13—N2	1.131 (4)	P5—F28	1.6200
C13—C14	1.462 (4)	P5—F29	1.6201
C14—H14A	0.9800	P5—F26	1.6202
C14—H14B	0.9800		
N1—Rh1—N2	88.75 (10)	C13—C14—H14A	109.5
N1—Rh1—C4	110.11 (10)	C13—C14—H14B	109.5
N2—Rh1—C4	158.14 (10)	H14A—C14—H14B	109.5
N1—Rh1—C1	112.22 (10)	C13—C14—H14C	109.5
N2— $Bh1$ — $C1$	97 43 (9)	H14A—C14—H14C	109.5
C4—Rh1—C1	65.76 (11)	H14B—C14—H14C	109.5
N1—Rh1—N3	86.05 (9)	C18—N3—C15	116.2 (2)
N2—Rh1—N3	88.29 (9)	C18—N3—Rh1	121.9 (2)
C4—Rh1—N3	103.49 (10)	C15—N3—Rh1	121.91 (18)
C1—Rh1—N3	160.86 (10)	N4—C15—N3	125.7 (3)
N1—Rh1—C2	151.48 (10)	N4—C15—H15	117.1
N2—Rh1—C2	92.57 (9)	N3—C15—H15	117.1
C4—Rh1—C2	65.57 (10)	C15—N4—C16	116.7 (3)
C1—Rh1—C2	39.38 (10)	N4—C16—C17	122.5 (3)
N3—Rh1—C2	122.45 (9)	N4—C16—H16	118.8
N1—Rh1—C3	149.10 (10)	C17—C16—H16	118.8
N2—Rh1—C3	122.10 (10)	C16—C17—C18	117.2 (3)
C4—Rh1—C3	39.44 (10)	С16—С17—Н17	121.4
C1—Rh1—C3	65 67 (10)	C18—C17—H17	121.4
N3—Rh1—C3	95.81 (9)	N3—C18—C17	121.8 (3)
C2—Rh1—C3	38.71 (9)	N3-C18-H18	119.1
N1—Rh1—C5	93.95 (10)	C17—C18—H18	119.1
N2—Rh1—C5	132.47 (11)	F4—P1—F6	90.0
C4—Rh1—C5	38 77 (11)	F4—P1—F5	90.0
C1—Rh1—C5	38 48 (10)	F6—P1—F5	180.0
N3—Rh1—C5	139.24 (10)	F4—P1—F1	90.0
C2—Rh1—C5	64.63 (10)	F6—P1—F1	90.0
C3—Rh1—C5	64.85 (10)	F5—P1—F1	90.0
C5—C1—C2	107.4 (2)	F4—P1—F3	180.0
	× /		

C5—C1—C6	126.9 (3)	F6—P1—F3	90.0
C2—C1—C6	125.6 (3)	F5—P1—F3	90.0
C5—C1—Rh1	72.13 (15)	F1—P1—F3	90.0
C2—C1—Rh1	70.64 (14)	F4—P1—F2	90.0
C6—C1—Rh1	125.8 (2)	F6—P1—F2	90.0
C3—C2—C1	108.4 (2)	F5—P1—F2	90.0
C3—C2—C7	126.8 (2)	F1—P1—F2	180.0
C1—C2—C7	124.8 (2)	F3—P1—F2	90.0
C3—C2—Rh1	70.90 (14)	F10—P2—F7	90.0
C1—C2—Rh1	69.98 (14)	F10—P2—F8	90.0
C7—C2—Rh1	125.68 (18)	F7—P2—F8	180.0
C2—C3—C4	107.6 (2)	F10—P2—F12	90.0
C2—C3—C8	127.0 (3)	F7—P2—F12	90.0
C4—C3—C8	125.3 (3)	F8—P2—F12	90.0
C2—C3—Rh1	70.39 (14)	F10—P2—F11	90.0
C4—C3—Rh1	69.56 (15)	F7—P2—F11	90.0
C8—C3—Rh1	126.6 (2)	F8—P2—F11	90.0
C5—C4—C3	107.5 (2)	F12—P2—F11	180.0
C5—C4—C9	126.4 (3)	F10—P2—F9	180.0
C3—C4—C9	125.7 (3)	F7—P2—F9	90.0
C5—C4—Rh1	72.12 (15)	F8—P2—F9	90.0
C3—C4—Rh1	71.00 (15)	F12—P2—F9	90.0
C9—C4—Rh1	127.7 (2)	F11—P2—F9	90.0
C1—C5—C4	108.8 (2)	F16—P3—F13	90.0
C1—C5—C10	125.9 (3)	F16—P3—F18	90.0
C4—C5—C10	125.3 (3)	F13—P3—F18	90.0
C1—C5—Rh1	69.39 (14)	F16—P3—F17	90.0
C4—C5—Rh1	69.11 (15)	F13—P3—F17	90.0
C10C5Rh1	127.4 (2)	F18—P3—F17	180.0
С1—С6—Н6А	109.5	F16—P3—F14	90.0
C1—C6—H6B	109.5	F13—P3—F14	180.0
H6A—C6—H6B	109.5	F18—P3—F14	90.0
C1—C6—H6C	109.5	F17—P3—F14	90.0
H6A—C6—H6C	109.5	F16—P3—F15	180.0
H6B—C6—H6C	109.5	F13—P3—F15	90.0
С2—С7—Н7А	109.5	F18—P3—F15	90.0
С2—С7—Н7В	109.5	F17—P3—F15	90.0
H7A—C7—H7B	109.5	F14—P3—F15	90.0
С2—С7—Н7С	109.5	F23—P4—F21	90.0
Н7А—С7—Н7С	109.5	F23—P4—F22	90.0
H7B—C7—H7C	109.5	F21—P4—F22	180.0
С3—С8—Н8А	109.5	F23—P4—F20	90.0
C3—C8—H8B	109.5	F21—P4—F20	90.0
H8A—C8—H8B	109.5	F22—P4—F20	90.0
С3—С8—Н8С	109.5	F23—P4—F19	90.0
H8A—C8—H8C	109.5	F21—P4—F19	90.0
H8B—C8—H8C	109.5	F22—P4—F19	90.0
С4—С9—Н9А	109.5	F20—P4—F19	180.0
С4—С9—Н9В	109.5	F23—P4—F24	180.0

Н9А—С9—Н9В	109.5	F21—P4—F24	90.0
С4—С9—Н9С	109.5	F22—P4—F24	90.0
Н9А—С9—Н9С	109.5	F20—P4—F24	90.0
Н9В—С9—Н9С	109.5	F19—P4—F24	90.0
C5-C10-H10A	109.5	F25—P5—F27	90.0
С5—С10—Н10В	109.5	F25—P5—F30	90.0
H10A—C10—H10B	109.5	F27—P5—F30	90.0
C5-C10-H10C	109.5	F25—P5—F28	90.0
H10A—C10—H10C	109.5	F27—P5—F28	180.0
H10B-C10-H10C	109.5	F30—P5—F28	90.0
C11—N1—Rh1	175.8 (3)	F25—P5—F29	90.0
N1-C11-C12	178.7 (4)	F27—P5—F29	90.0
C11—C12—H12A	109.5	F30—P5—F29	180.0
C11—C12—H12B	109.5	F28—P5—F29	90.0
H12A—C12—H12B	109.5	F25—P5—F26	180.0
C11—C12—H12C	109.5	F27—P5—F26	90.0
H12A—C12—H12C	109.5	F30—P5—F26	90.0
H12B—C12—H12C	109.5	F28—P5—F26	90.0
N2-C13-C14	179.1 (3)	F29—P5—F26	90.0
C13—N2—Rh1	174.6 (2)		

Fig. 1

